	Enrollment No:			Exam Seat No:						
			C.U.SHAH	UNIVERSITY						
	Summer Examination-2018									
	Subject Name: Graph Theory									
	Subject Code:4SC06GTC1		C06GTC1	Branch: B.Sc. (Mathematics)						
	Semeste	er: 6	Date:04/05/2018	Time:02:30 To 05:30	Marks: 70					
	Instructi	ons:								
	(1) Use of Programmable calculator & any other electronic instrument is prohibited.									
	(2) Instructions written on main answer book are strictly to be obeyed. (3) Draw past diagrams and figures (if pagessary) at right places.									
	(3) Draw neat diagrams and figures (if necessary) at right places.(4) Assume suitable data if needed.									
Q-1	Q-1 Attempt the following questions:									
•	a) Define: Pendant vertex.									
	b)			es, then find the maximum number	of edges.	(01)				
	c)		Spanning subgraph.			(01)				
	d)			nine whether the statement is True of	or False.	(01)				
	e) A vertex with minimum eccentricity is calledf) If G is a graph if and only if it has exactly two vertices of odd degree.					(01) (01)				
	1)		disconnected	· •	du degree.	(01)				
		(i) (ii)	Euler	(iii) unicursal (iv) none of these						
	g)	` ,	Open walk.	(tv) none of these		(01)				
	h)		ch values of m and n , $K_{m,n}$	is Euler graph?		(01)				
	i)			ine whether the statement is True of	r False	(01)				
	j)	_	k of connected graph is		i i disc.	(01)				
	k)	If G b		n vertices and k -components,	then G has	(01)				
	l)	How ma	any cut vertices exist in cor	nplete graph?		(01)				
	m)	Draw th	e 4-regular simple graph w	ith 6 vertices.		(02)				
Atter	mpt any	four que	stions from Q-2 to Q-8							
Q-2		Attemp	t all questions			(14)				
	a)		nd prove first theorem of g tices in graph is even.	graph theory. Using it prove that the	ne number of	(07)				
	b)	Let $G =$	0 1	aph where k is an odd number. The	en prove that	(05)				

State and prove necessary and sufficient condition for disconnected graph.

c) Draw a graph with degree sequence 0, 1, 2, 3, 3, 4, 5, 6.

Attempt all questions

Q-3

a)

(02)

(14)

(07)

b) Answer the following questions from the given graph.

- (i) Write one cycle from V_7 with length 8.
- (ii) Find edges in series.
- (iii) Write one path of length 7.
- (iv) How many odd and even vertices in the graph?
- (v) Write one closed walk with length 9 which is not cycle.
- (vi) Write one Euler line.

Q-4 Attempt all questions

(14)

(07)

- a) Let G be a simple graph with n vertices and k-components. Then prove that G have at most $\frac{(n-k)(n-k+1)}{2}$ number of edges. (07)
- **b**) Draw the dodecahedron graph and find Hamiltonian cycle in it, if exist. (05)
- c) What is the smallest positive integer n such that the complete graph has at least 1000 (02) edges?

Q-5 Attempt all questions

(14)

a) State and prove Euler's theorem.

- (07)
- **b**) Prove that $K_{2,3} \cong K_{3,2}$. (05)
- c) Find a fusion graph of the following graph by fusing vertex V_1 and V_2 . (02)

Q-6 Attempt all questions

(14)

- a) If G be a tree with n vertices, then prove that it has n-1 edges. (05)
- b) Without drawing graph check whether the graph corresponding to the following adjacency matrix is connected or not:

[0	1	0	0]
$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	1	0	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
0	1	0	0
Lo	0	1	0]

Write four fundamental cut sets and four fundamental circuits with respect to (04)spanning tree $T = \{a, d, f, i, k\}$ of the following graph.

- Q-7 Attempt all questions
 - (14)Prove that in a complete graph with n vertices, there are $\left(\frac{n-1}{2}\right)$ edge-disjoint (06)**a**) Hamiltonian circuits, if n is an odd number greater than equal to 3.
 - Prove that graph G is a tree if and only if it is minimal connected graph. (04)
 - Find path matrix for $P(v_1, v_5)$ and circuit matrix for following graph (04)

- **Q-8** Attempt all questions
 - Explain Konigsberg bridge problem and write solution which is given by Euler. a) (06)
 - Define incidence matrix and find it for following graph. (04)

Find the number of pendant vertices in binary tree with n vertices.

(14)

(04)